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ABSTRACT

Presented in this report are the results of an investigation to
determine analytically two thermodynamic transport properties =--

difference in specific heats and the

change in entropy =-- as described

by five independent equations of state for gases.

Change in entropy and specific heats of gases are used in thermo-

dynamics work to evaluate properties
state such as flow properties behind
logical starting point for this work
are known at high temperatures these

Steam was used for illustrative
defined, thoroughly explored gas.

of gases undergoing change of
shocks. Change of entropy is a
and where applicable properties
equations may be used.

purposes because it is a well

The development of the equations precedes each equation in a
logical, straightforward manner and ends with the desired properties
in terms of known thermodynamic coordinates.

Comparison of the calculated change in entropy is presented in
bar-graph form in Figures 1 and 2 for these equations of state for a

real gas, superheated steam. A comparison of the difference in specific

heats for these equations for the same gas is given in Figure 3.

In both the entropy change and the difference in specific heat,
good agreement is found among the five equations of state.
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I. INTRODUCTION

The purpose of this report is to determine the dif-
ference in specific heats at constant pressure and constant
volume, the ratio of these two, and the change in entropy
for five equations of state, These are the perfect gas,
Callendar, Dieterici, Berthelot, and Van der Waals equations.
After these relatlons have been established, some examples
of how they might be used will be shown for superheated
steam,

II. DISCUSSION

- It is desirable to obtain the difference in specific
heat at constant pressure and the specific heat at constant
volume for a substance in terms of pressure, volume, and
temperature,

Heat capacity may be defined as the ratio of heat
.entering the system and the change in temperature of the
system or substance. The instantaneous heat capacity, or
specific heat, is defined as this ratio as both the heat
added and temperature change become smaller and smaller.
Written in mathematical terms, c =92 - This -has a unique

dT
value when the pressure or volume of a substance is kept
constantj thus, dQ\ and dQ . This requires,
Cp = \aTp Cv = \aTv

then, that specific heat be a function of at least two
variables in thermodynamics.

For two reversible paths joining two equilibrium
states of a system from Clausius' theorem we may write:

£ i
ﬂ = I ﬂ + I .(& = 0
Rle-[dT O oor gl T rJIE T T O

Rl 2

where R, and R, refer to the path taken from and to points
i and f in any thermodynamic systen.




f
which means that Si dQ is independent of the path taken
T
and allows a function to exist in the coordinates of the
system whose final value minus the value at the initial
points equals the integral £ . We may call it the

RSi g_q

entropy. If ‘the two states are made infinitesimally near,
the integral may be dropped and the difference replaced by
the differential. Therefore, 49 « It is interesting
r
—-:ds

T

to note that although dQ is not an exact differential, ds
is exact. The reciprocal of the Kelvin temperature is the
integrating factor. Dividing both sides by dT and multi-
plying by T gives %% Tds + 1f we restrict this expression

= ar
to constant volume aad constant pressure, respectively, we
get:

& - &) (@) -7 &),

To show entropy as a function of two thermodynamic
variables, we will use the following two theorems in mathe-
matics.

Theorem 1, If a relation exists among x, y, and z, we
may imagine z expressed as a function of x and y; whence,

= [z 3z\ dy.
9 W)v e (W)x ¢

If we let:

M = 32 = 3z . - 1
(%;'y and N (7§ x then, dz 1 dx + Il dy,
where z, M, and N are all functions of x and y. Differ-
entiating M partially, with respect to y, and N with respect
to x, we get:
(3M _ 322
W) x " 7 x oy
(QN) :azz
> y 5y X ¢
Since the two second derivatives on the right are equal,
it follows that: ( M)

aM) o fam)
YJ x ~ \x/]y

2



This 1s known as the condition for an exact differential,

Theorem 2. If quantity f is a function of x, y, and z,
and a relation exists among x, y, and z; then f may be
regarded as a function of any two of x, v, and z. Similar-
ly, any one of x, y, and z may be considered to be a

function of f and one other of x, y, and z., Thus, regard-
ing x to be a function of f and vy,

ax = (X df + (X dy.
oOf Jy ay )t

Considering y to be a function of f and z,

. [a ? .
o () (e

Substituting this expression for dy in the preceding
equation, we get:

oo [+ () @ |- [G)e ()] =

- IxX df + IxX dz.
But, dx (FT)Z (F?)f z

Lquating the dz terms of the last two equations, we get:

() )~ (8 () ) (8

It may be shown that (gg) Cv and (QQ) = Cp.
p

dT /v 4T,

To arrive at the difference in specific heats in the
pressure, volume, and temperature coordinates we nay use
entropy as A function of T and V, and T and P, respective-
1ly.

ds = (35) dT + (35 dv. MMultiplying through by
v W

39S
=7 (3s\ 4T + Tf28 dv=CvdT+‘r(._) av.
T, Tds T (ET)V (aQ)T v )T




From the equation of the Ilelmholtz function A = U - Ts,
we get the differential resulting in an infitesimal change.
dA = dU - Tds - sdT = -pdv - sdT, this is an exact differ-
ential since A is an actual function., From the above mathe=-

matical theorems we see that _ 3 _ [3s How:
3% v~ \3vJT

Tds = Cv dT + T [2R) av
\3T /v

Imagining entropy to be a function of T and p we

obtain: ds = 3s ar + (25 dp. Multiplying through by
oT Jp ap T

T’Tds=T(?a_S.) dT+T(g_S_> dP=deT+T(%_S,) dp.
T/p p/T p/T

From the change in Gibbs function, G = H - Ts, dG = dH -
Tds - sdT dG = vdp - sdT, an exact differential. There-
fore’ SO now

3V -fas - ( =-3v)
z Tds = Cp dT + T v) g
(W)P (W)T Tp
Tds =

Cp dT - T (g.;l’,)p dp.

Equating these two equations: Tds Cp dT - T (%%)p dp

Tds

Cv dT + T (g.q.)v dv

Cp dT - T (%¥) dp = Cv 4T + T (ig) dv ; solving for
P aT Vv

- =1 (3v)  gp + T €(3p)
dT, CpdT - CvdT = T T o p ’Jf,v dv

. _T (3v) T _(3) 4y, Imagining T to
T = o T ¥ "Tpov T v e

(3T) qv + (D) dp

be a function of V and p, dT = ™ D 35 v

(3T) dv + (_3-2) dp = T (av) dp *+ T (ap) dv.
° %o 35 v oo T p o M




Therefore, the terms corresponding to dv and dp on each
side of the equation are equal,

(3T) T (3p) 37y _ T (3v)
3V p ® Cp-Cv 7% y and DV T

L34

Cp-Cv

(3p) (3v) v = m Cav)  (ap)
T 3% v ol o and Cp-Cv = T %T b 3% v

which? of course, is the same from each equation,

To show clearly that Cp-Cv is always positive for all
known substances let us get the change in pressure with
respect to volume instead of (3@) in this equation.

To do this let us use the two mathematical theorems
discussed earlier., Suppose a relationship exists between
pressure, P, volume, V, and temperature, T, so that
f(p, V, T) = 0, Let us imagine P as a function of v and T.

do = (3p) dv + (3p) ) : .
p 5& T . &, dT and.v as a-function of p and T
dv = (V) dv + (3R) 4T and v as a function of p and T,

ap T 3T v ,

- (av) (3v)

dv = a—-T dp + ﬁp daT
dp = (3R) | (a¥)  ap + (av) aT| + 3p) a7

F& T PT T S& v

= (3p) (av) (3p) (av) -~ 5 (3p)
®r wr P wer w, T F,

(ap) (av) (ap) (av) 4+ Cap) |ar.
v T dp+[%€'"r &, *y

Now, of the three coordinates only two are independent,
Let us choose p and T as the independent coordinates. The
above equation must be true for all values of dp and dT.
First, let us make dT = 0, and dp not equal 0.

(3p) (av)
Then, dp = ‘@’ (‘g%)r' dp + 0 or ghgp Fppc1




If dp = 0 and dT not equal 0 then,

_ (3p)  (av) (ap)  (av) + (3p)
0= "%y 55 0 AR S R

so then, the coefficient of dT must equal 0.

(a3p) (av) (3p) . . (ap) (av) _ -(3p)
38 T rp’t F% v 0 3 3% T 3T p 3@ v

(3p) -(ap) (V) . . . lati e
Eg'v = ?% T 5T p substituting this relation into

the specific heat difference equation we get:

- = (ap) (av) - 7 |- (3p) (av) (3v)
Cp-Cv =1 3r Vv AT p [ 3% T 3T pl T p
-T (1!)2 (32)

aT p avT

Cp-Cv

First of all, it may be remembered that(%%lT is always

negative for any known substance so the two negative signs
when multiplied will give a positive, T will always be

positive and S%Xl is squared, and, whether positive or
Tp

negative, the square will be positive, Therefore, Cp-Cv
will always be positive, or Cv is never greater than Cp.

It may be noted that as T approaches absolute zero the

oy (3v)
heat capacities are equal. Cp may equal Cv when 37T p - 0
as in the case of water at maximum density. lNext, we may

determine the ratio of specific heat as a function of
P, T, and V,

From the two Tds equations derived previously,

Tds = CpdT - T ~gp=, dp Tds:CvdT+T-‘-§%’-V dv

at constant entropy ds = 0 and CpdT = T L%%l dp
)%



CvdT = =T (%%)v dv 3 divide second into first

c (av) (aT) (ap)
C% - EF D 3; v ;% s but from the mathematical

theorems we may rearrange our second term of

(3p)  v) , (ap)

3V T 3T ap vy = O to get an equality for
(3v)  (3T) . GaP) (v) _ (ap)
3T p 3p Vv 3w T 3Tp - 3Ty
(3T) (3p) (av) (av) (3T) = - (3v)
pm— m—— - -l ; o— am—— —-— .
Pv v T 3T p 3T p PV op T

Substituting in the specific heat ratio %2 equation we get:
v

Cp ., _(3av) (3D 3p) . _|- v |Gp) .
Cv 3T p 3P V av s a3 p T] av s

v G Cp . (W) (ap)
ApT avs °r TV~ T 3% s

There is possibly another relationship between
P, V, and T for entropy so that the fundamental Tds equation

mipht be used for cp » where an identity might be obtained
Cv
for (%2> ., This may be accomplished by using a fundamental
Vs

mathematical theorem which will relate entropy (s) to
pressure (P), volume (V), and temperature (T)., It is known
that entropy is a function of p, v, and T and that a
relationship exists among p, v, and T so that entropy may
be regarded as a function of any two of p, v, and T,
Similarly, any one of p, v, and T may be considered a
function of entropy and one other of p, v, and T. Thus,

regarding p to be a function of s and v,

ap = (2R)  4s + (3R) dv ; and considering v to be a
s v v s




(V) 4 + (3V)

function of s and T, dv = = = s

dT ; substituting

this expression for dv into the former equation:

(2p) Gp)  [aw) (3v)
%v ds + .z_g_s [asT ds + = < dT

dp

- (3p) (ap) (3v) 45 + (3p) (3v)
dp 55 v ¥ %s mmr ° 3% s s T

3s v 3V s SET av s 3T s

o - [(32) , (R (v ] 4s + R) V) up
Equating the dT terms of the equations for dp we get:
(3p) (3p)

FET ds + 3%8 dT

i - [(32_) . Gp) (gy_)T] ds + [(%%)s (3v) ] aT

dp

s Vv v 8 9

(3p) . (3p) (W) . QD Gp) G
T s vV s .a-'fs or 1= 3p S S%S 3T s
Gp)  (gp) D) CR . (3v) (,py (3D)

;% s ® 3Ts avs 5° Cv p T %@ g 9V S

From the equation of the difference in specific heats,
we will obtain the relationships of p, v, T and other con-
stants for three types of gases, The first will be the
ideal gas equation, pv = RT

(av)2  (ap) (av)?2 (Q(IRT)i R2
= - kA4 2 - : o
Cp-Cv = - T ATp avT Wp® 3Tp P2

(3p) _RT . . R} .+ .R3T?
%TS —vz’cp-CV--Tsz %2-+

pZ v
2 p2
but %14§r =1 and Cp=Cv = R for an_ideal pas.




Next we will get the difference in specific heats for
a gas that follows the Van der Waals equation of state,

=~

(P+ a) (veb) = RT 3 T = & (p + a) (vb)
2

v2 v

(BT |1 [(p +a) , (v-b) (-2a)
2 z2a

- = o3 > ] 3 squaring this term
\Y

v p

L. [tp +.a) - (v-b) (2a)] 2
we get: R2 ~~ -

v2 v 3 3 inverting this

2 2
we obtain: (&¥)° | R

P [p +3 . 2a(v-b]Y?2
v2 v3

(3p) _ 2a _ RT _ 2a (v-b)2 - RTv3 [RTv3 - 2a(v-b)i]
VT w3 (v-b)?2 vd (v-p)2? v3 (v-b)? J
o o (AVZ (3p)
Cp~-Cv = =T T 3%'T
CoaCy TR? ) RTv? - 2a (v-b)2
P [P*e - 2awmy VIR
v? v .
« R2T 1 ~ [RT v3 - 2a(v-b)?
P+ta - 2a(v-b vi(v-b)?
[P, - 22l-o¥

Van der Vaals' equation.

The difference in specific heat for a gas that obeys
the Callendar equation of state:

RT = p(v-b + a ) where n =
™ “



(RT, 2

(3v) ) —E - Th + b) ; R , ha
Tp |3 T p P T+
=
v)2 _ [R, na 2 (3p) _ (v-b + TR) 0 - RT
3T p |P T+ 1| avrT (v-b + a)?
™
(d3v)2  (3p) R ., na 2 RT
- " - —— - T - e———
Cp-Cv T 3T p av T [P Tn+1] [(v-b+a)—f]
™
RTR*L 4 na 2
= RTZ |. E : wheren=-l—o-§n*1=‘1":'
T+l (v-b + a ) 3
P ™
2
. Ry 10
oo Cp=Cv = RT2 T3 p3a Callendar's equation.
PT (v-b ¢+ a )
T10
1
Berthelot's equation of state:
= RT =-a RT a
P % —_— - =, - = 0
v-b Tv?Z or veb " Tv2 ~ F
Cp-Cv = --T(-a-‘-'-)2 (2p)
T p v T
(RT -a )
(m) :av's Tv --52__.2 +.2..a_.3
/T oV T (v-b) v
(RT =a - p) (RT) a
aw-b Tv2 ] N - °(Tv2) - [_ap_] : 0
aT |p T |p aT p 3T Ip

10




(dv)
0 = (v-b)R = RT (dv) (Tv?) O-a[Tzv a'rp+v2]-o= 0
dT p . ‘
(V—b)z (TVZ)Z
0 = R (v-b) = RT(dv) 2aT v(dv) + av?
dT p + dT p
(v-b)2 (Tv2)2
0 = RT2v*(v-b) - RT3v%(dv) + 2aTv(v-b)2(dv) + avZ(v-b)?
dT p aT p
T2v" (v-b)*

RTzv“(v-b)-RT3v“(gx) + 2aTv(v-b)? (dv) + avi(v-b)? = 0
aT p arT p

RT2v"(v-b) + av? (v-b)? = (dv) [RT3V“ - 2aTv(0-b)2]
dT p

(3v) _ RT2v*(v-b) + av? (v-b)2
3T p RTIvY - 2aTv(v-b)?2

2 2
(av)? RT2v*(v-b) + av2(v-b)?|  |RT2v3(v-b) + av (v-b)2
*|RT3v® - 2aTv(v-b)Z RT3v3 - 2aT(v-b)Z

_ o (Aw)? (3p)

Cp-Cv

3T o) ov T
R RT2v3(v-b) + av (v-b)? 2 -RT + 22
Cp-Cv = -TIRT3v3 - 2aT(v-b)?2 (v-b)2 T3

11



RT2_ (v-b) + a/v2(v=b)?|®|RT? + 2a
RT3 =2aT(v-b)? (v-b)2 v3| =
v

[R a 2
T v-b Y r2y2

-2a RT
Tvs * (v-b)?

Cp-Cv =

(#)

Dieterici equation of state: p = L ©
(v-b)
-a -a -a
v Mv.2 v
Gp) (2 (RT e )] . RT |(v-ble (RTv®) - e
av T “\3 v-b T = veb)Z
a v
Gp) = rre | l(v-b)<RTv?) - 1], RTe CON—
. v-
vT (v_b)z Vé(v-b) )
— - sa
RTv v
( (RTe (RT e )
() ¥ veb + dv=b
T p \ oT P v P
-a za
. R RTv —&. . RTv
© Vb l'r e (RvT? e l
-a =a_
v RTv
a
RT J(veb) RIVZ e - e
(v=b)?2

.12




a a
CRVT + 1 . y-b [FVT + 1]

T(v=b) M a
T o mrotl | [o-omi 1]
a a 2
) RTV + 1 . (3.‘1.)2 ) 1 + RTv
a 1 Y aTp [ a 1 ]
T | RTv? ""'""'v_b] T LRTvZ ~ Vv-b
=2
21?2 RTv ’ a
- l 1 + RTv RTe RTv2(v-b) - 1
Cp=-Cv = — —
P a 172 (v-b)?2
T |RIWT ~ v-b
-a
[ _9_]2 RTv
l + RTv § 1 - a Re
r a 1 72 (v-b)?2 RTv2 (v-b)
[R'rvz' v-b]

Using properties of superheated steam from a point
near the saturated line to a point far away from the
saturated line, we may compare the values of these three
expressions for the difference in specific heats,

The first to be calculated will be the ideal gas case.
This is a constant and is equal to the universal gas con-
stant., The universal gas constant is approximately 15u45
ft 1b/1b mol®°R, Cp-Cv = 1545 ft 1b/1b mol°R for the ideal
gas,

To solve for the two constants we will employ the
properties of the critical isotherm at the intersection of
the saturation line for the Van der Waals, Berthelot, and
Dieterici equations. For the callendar equation, we will
choose two points in the superheated steam range of values
to obtain these constants, This is done because the
Callendar equation does not apply at the critical point,

Berthelot's equation:

Since the critical point is the limiting position as
two points on each of the saturated liquid and the saturated

13




vapor at the same pressure and temperature approach each
other, it follows that at a maximum point on the curve, the

slope is zero. This means that (%E)T = 0; also, since the

critical point is a point of inflection on the critical
. (3%p) .
isotherm, .5—%2,1, 0.

From these two facts, plus the equations themselves, we may
determine the two constants.,

' = RT - 2
Berthelot's equation: p b To2

RT a
(3p) 3v=b | - [3Tv? - RT - (- 2,3)= 2a_ - RT
3% T * ( 3 v T) (3v )T * (v-p)2 “Tv3) ™ Tv? (v-b)?

(3%p) _-6a , 2RT  _ o .2a _RT _

aviT = Tv®  (v-b)3 V3 (v-D)?2
6a _ 2RT ., 2a _ RT__ 3a _ RT__
T™ve = (v-b)3 »  Tv3 = (v-b)2 Tv* = (v-b)3

Dividing one by the other, we eliminate a and obtain b,
in terms of the critical volume,

2aTv" RiCv=p® .2
TvI 3a * (v-by2 rT - VP Ty,
2
v-3v = bj or vo = b
3

Putting this into the first equation we get:

2a - RT ]
T(3b)3 (3b-b)2 °?

1y




2a RT __ 2a ;2 2aid’ _ ga
T(3p)3 = 4bZ ~ T27b° = 273K © 27bR

/aa .
or T = 27bR and putting these two values into the equa-

tion we obtain:

n
0
oo
o
x

Pe - = [8aR _1 _ —=
21b Yyl 2 *V27p 2p yB8a 2
3b-b »75r (3b) 5o 9b

1 1
=]/85R _ - o = E&? - oL
27b3x" Y X 27b
27abR ar
20R24b3 1
V -1 48
27b3aR : Var -1 ] D
24b3 ,/21: b3 24 b3
aR aR aR
Pc = X aR_ _ 1 )/ aR = 14/ 2aR - 1 2aR
¢ =3 ¥’ "5 Tawx 9 ﬂ—x?(qug)b 12 ) T3p
=T = == T
RTv 9 - RT RTwv a RT
T 3 SPY = v
P = 5_ e (av)T w-5° RTVZ + e = (v-b)?
-a [rT a RT ) E%
‘HTV (V-b) RT 2 (V-b)z - e RT a - l A 0
(v=b) RTvZ  v-b



v 1l
22 ngm 1 - 2a a
( v;)T = v=b [(v-b)2 RTvoy| ¢ RT[RTv! v=b

((V-S) a _1)

(v-b)2?

-4

e s

- 2a [ a 1
— 2] = RTV [(v-b)2 vz B LW - 'v_-'S]
(veb)
a __1
v'l'b'] s RT‘ [v-b)z B R'rv’ *[ RTv2  v-b

a 1 _1_ ]
RTvZ “y-b ° (veb)2 R‘l‘v3 [RTv2 -—B

2
& 2 =5°P (v-b)2 ~ (v-b) RTv? (V-D)VZRT ~ v-b




NI S S T
wW-bB)2" (v_p)V “ lv-b vob) *

1 . 2 ., (v-D)V ) =
(v-by2 - Tv-B)yv  ° (v-p)Z = ¢ *©

i

2v=2b = v 5 2v-v = 2b H v = 2b .

Substituting this back into the first equation for derivative

e = 0

t:—a—— - -
we BeL: RT(2p)2 755

a

a 1 _ab
RIGBZ = § REBZ = Tc = 5Rp

Substituting these answers back into the equation of state
we find:

auRb
-Ra!s -
Pc - cRiu—e_-—- ae 2 a -
4Rb(2b-b) = ¥bZ - % elp? - Pe

Van der Waals' equation of state:

RT a
(P *<2)(yp) =R or  P3:H -7

(32) - -RT + 2a _ 0 2a RT
v/ T (v-b)2 v3 © vI © (v-b)2

azg _2RT__ 6a _ . 3 RT
w2 T b3 Ve (v-b)?

=

17



4 -b)3
2av' ~ RT (v=b)® _ 2 v = veb

v33a  (v-b)Z RT 3
1 2a RT 2a RT
2 - - . - omt—— - ———
v-3FVEPbEIVe 5 TIBY T (3b-b)2 T 77BY 7 b2
2a RT S|
27 4 ¢ 7 Z7Rb

Finally, substituting into the equation of state we get:

= -BL—— - a s —T-ua-sa s by 3'1 = Pec
27b(2Db) T 27b 27b¢ ~

Since the Callendar equation of state does not apply
at the critical point, we may obtain the approximate values
of its constants by substituting values of P, T, and v in
the superheated steam rarge where this equation is applica-
ble.

Point one will be a pressure of 40 psia, a temperature
of 300°F, and v = 11,04 ft3/1b specific volume. The first
point will be p = 80 psia; T = 500°F; and v = 7,02 ft3/1b,

L
3 1
az(-v+b+RT)TN =(=126,2 + b + 1545x960)(,96) =~ x 10'°
P 11,520
a = 873x107 (b + 128.5 - 126.2) = 873x107 (b + 2,3)
b H mj—(b + 203) - '4.8 s 873 b + _8_7_1(2.3) - '4.8
401x107 vor 40
2,175b=b = 4.8 = § = - 0,2 = 1,175b
b = -,17ft3/1bmol

18




Using another point of p, v, and T we find:

a,b, p = 160 psia, T = 900°F, v = 5,015 ft3/1b 1o

a = (-v+b+RIIN = (<90 + b + 1545%136.0)(1.36) °x10
P 23,050

10

a= (b+ 91,1 - 90) 2,781x10'% = (b + 1,1) 2,781x10!°

Equating these two we get: (b + 1,1) 2.781x10'°0 =
(b + 2.3).873x10!%;(b + 1,1) 2,781 = b + 2,3 ; 2,781

b+
.873 873
1.1(2,791) = b + 2.3
0.873
3.185b - b = 2,3 - 3,5
2.185b = =1.2 b = -0,55 Callendar's equation,

a=(b+ 1.1) 2.781x1010 = (1.1 - 0.55) 2,781x10}9 = 1,53x10!0

For the Berthelot equation of state for steam:

Ve = 0,906 ft3/1bmol Pe = 459,000 1b/ft?2

Te

705°F = 1165°R
b = ve = 0,906 = 0,302 ft3/1bmol
T 3

(12b pc)? = 2Ra 3 a = 3b(12bp )2 _ (,306)(4(,906)4.59)2x10}0
3 2R 2 x 1545

a = (.,906) 278x10}°

s . 7 = 8,14 8
3.09 x 10 8l.4 x 10 8.14 x 10° 1b

ft2(£ft3)2 oR
15mol

19




a = 8,14 x 108 (EEiLi oRr 1b
1bmol ft2

Calculation of Cp-Cv for Berthelot equation at point one,

p = luu0 psfa, T = 660°R
v = 700 ft3/1bmol
a = 8,14 x 108 (£ft3)2 °Rlb - g, 6302 ft3

(1bmol)2  ft? Ibmol

Berthelot's equation:

R + a ]2

v-b 2v 2
Cp-Cv = T -zl J =

RT _ 2a

(v-b)2  Tv3

8 2
6.6 x 102 1545 + 8.14 x 10
i[]OO-.302 (6.6)2x492x10"

1545 x 660 _ 2(8,1u4)(108)
(700-,302)2 (660)343x106

660 [2:207143 + 0.00381F
2,081 - 0,00719

Cp=-Cv

Cp-Cv = 1556

Dieterici's equation of state:

p = 1440 psfa ; T = 660°R, v = 700 ft3

mo
a=3,2x108 ; b = 0,453
za
RTv[ _.2-]2
Cp=Cv = Re 1 + RTv ) S a
(v-b)2  RTy2(v-D)

a . 1 ]z
[RTV2 v=b

20



-3.2 x 106
Cp-Cv = 1,545 x 10% e 1,545 x 103 x .66 x 103 x 7. x 102

3.2 X 106 - 1l
1,545 x 103 x .66 x 103 x 49 x 10“ 700

2

3.2 x 106 2
1 + 1,545 x 103 x .66 x 103 x 7 x 102

N 1 _ 3.2 x 10°
Ls x 107 1,545 x 103 x ,66 x 103 x 49 x 10% x 7 x 104
2
3
Cp-Cv = 1,545 x 103 [l + ,00u4]
.00u5 1 - 1 )
e [15.6 x 10 7 % 102]
X [__L__ - 1 ]
49x10"% 109,x106
U -6
Cp=Cv = 1,545 x 103 [1.01] ([.0204 x 10 - 0092 x 10 ]
[1.01-] [.641 % 10~% - .143 x 10-2)2

- 1,545 x 103 2,03 x 10-% _ 1545 [2,03] x 10-6

(-0,137% x 10-2)2 (1,37)2 x 10~6
= 1545(2,03) . 1668 ftlb
1.88 1bmol®R
a = 1400 atm (ft3 )2 ; b = 0,488 ft3/1bmol
1bmol Van der Vaals equation,
= 1400 x 2116,2 1b (£t3 )2 2,96 x 106 1b (ft? )2
ft2 Tbmol : ft2 1bmol
T = 200°F = 660°R; v = 38,85 = 700 ft3

1lbmol

21



R = 1545 ftlb p = 10 psia = 1440 1lb abs.
1bmo1°R fr?

Cp-Cv for the Van der Waals at this point will be calculated
first,

Cp‘CV = R2 T 1/2 2 RTV3 - 2a(v-b)2

P+ a_ - 2a(v-b) v3 (v-b)?
v?2 v

(1.545)2x106 660 1/2
1440 + 2,96 x 106 - 2(2,96 x 10©)(7., x 102)
(7.)2 x 10" 73 x 106

-

X [1.545 x 103 x 6.6 x 102 x 73 x 10% - 2(2,96 x 10%)7%2 x 10]
73 x 108 x 72 x 10" J

= 2,39 x 10° 660 /2
1440 + 296 - 6 x 108
49 49 x 10“
350,0 x 10'2 - 300 10 660 1/2 2
- x 10 |- 2.39 x 106
17,500 x 1010 1440 + 6,05 - 12,2

w7 ) 660 347 x 106 = 2.18 x 10°© ftlb
175)= 2°39 (1436)° 175 1.436 x 103  1bmol°R

= 1518 ftlbd
1bmol®°R

Cp-Cv for the Callendar equation for superheated steam at
these same conditions is:

22




13 10 12
Cp-Cv = RT2 |RT_3 + 3 pa
13
3
pT (v=b + a )
10
¥
[ 13 10 12
Cp-Cv = 1545(660)2 | 1545(660) ° + ~F (1u440)(2,96x106)
_1__0_
1440(660) > (700-0.488 + 2,96x106
_li
| 3
(660) -
ot 1—3- 1—3
3
Cp-Cv = 1.545x(6.6)2x107 | 1.545x103(.66) > x(103) * +1.4ux1010
13 19
1.440x103(,66) *x(10%) (7x102+2,96x10°
10 lo
X (.66) *x(103) °
! I
16 0
Cp-Cv = 1.545x(6.6)2 x 107 |Q:2558 x 10 7 * 3.4 » 10
0.2385 x 1076 (7 x 102 + 18 «x 10'4
16 12
_ . [o.zssa x 10 ]
Cp-CV = 1545 x (6.6) x 10 1.6506 X 10Tr
Cp-Cv = 1545 x 3.6 x 10* [0.1548]2 x 107"

23



Cp-Cv = 1545 x 43,6 x 0,0239 = 1545 x 1,04

= 1610 ftlb
1bmol®°R

Cp-Cv = R = 1545 ftlb = constant for ideal gas.
1bmol®°R

To see how closely these gas equations represent
superheated steam, we will take two points for each gas to
determine the change in entropy for a reversible, isothermal
expansion of steam.

Fiom the equation for the change in entropy as a
function of two thermodynamic variables, we get:

— — and (35) = (12)
3T v av T av T aT v

1
e}
L=
+
o
<

ds =

ds (%i)v dT + (%g)v dv. Tor a reversible isothermal:

dT = 0 so ds = (2k) av.
oT v

(_32) T

3T v for a Van der Waals equation: p = 37§ ~ %7

< )=

(RT a_
3 v=b v2 R
aT v v=b
Callendar equation: p = RT
v=-b ¢ a

™
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v-b + a (v=b +_a » R - (RT)(=-na__ )
3 In 3 TN L Th + 1
oT v (v-b + a_ )2
Th
-2
. . s . RTv
Dietericl equation: p = RT o
v=-b
-a
RTv -a -a -a
2RT e ) RTv RTvy RIv
v-b _R E@ (a) e ]zRe
3 T V F v-b RTv?2 v-b
perfect gas: pv = RT p = RT
v
a (RT
v _R
3T v v
. RT a
Berthelot equation: P = = = e
v-b Tv?

9(RT_  a)

v=-b Rv? R, _a
3 T v veb T2y2
ds = (R) dv Van der llaals equation:
v=b

25




a RTna

ds = [(v=b + TM") R + TN+1 Ydv = Rdv + RT na dv
(v-b + a )2 (v-b + 2_) ™ 4+ 1(v-b + 2_)2

T TN !

Callendar's equation,

Dieterici

-a
ds = ReRIv a_, 9 dv = a dv , R_dv

v=-b [RvT a a

RTv RTv
ds = & 4v perfect pas e (v-b)vT e (v-b)
v
gs = (RL 4y + _2 dv Berthelot's equation,
v=b T2y2

To get the change in entropy, we will integrate the

equations for S, = S,

Sy Vo VZ
fds = I-R. dv = R [ln(v-b)] s R[ln(vz-b)-ln(vl-b)]
Sl V1 V-b Vl
Va-b
= R[ln(—'z——)'] Van der laals
(V,=-b)
8; Va2 Vo
= dv + plna J' dv _ 20172,
s".ds v] v-b+a TR*L o fv-b+a \2 ° R[ln(v b T“)]
: ™h Th Vi
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27

-2+1 }V2
RTna 1 veb +== -
T+l |-2+1 ™
Vi1
2 v
RY 1nfV2~P*mm Tna 1 2
v,=-b+ .2 1l \ v-b+ 2
TN T
v
1
S2 a
V, ~b+ 5
ds = R} 1nf_2 TR Tna 1 - 1
51 V,-b+ 2 Tn¥I v,-b+ 2 v -b+.2
h - Tn 1 Th
- Va=bt——
= R]1ln Th Tna 1 1
v,-b+.a v n¥l v,-b+_a v,-b+_a
n ™" Tn <
Callendar's equation.
2
i RTv
RT e -a -a
v-b / RTv a RTv
- R + e———
— == |Te rvr2J* ©
- v
2.
RTv
Re 1.8
.—BV- [—RTV + 1]




RTv

-a -a = e——

RTV RTv ~ RTx
R Re a
-— .a dv + dv let gy = X
(v=b) RTv v-b
AX = —
RTv?2

a
-X -X
ae RTv?2 dx + Re_ CRTvZ dx)
Tav(v-b) X (v-b) a
-X 2, =X
Re vdx R.IT e vdx let v-b = v
(v-b) - a where v>>b
-X R2Te Xa dx
Re ax - T~ Rrrx
v2
-X Re xdx
Re dx -
vi X
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V2 v2
R ‘/ﬁ e~X dx -u/ﬂ e~Xdx |=

Vi

V2
R |- -|lnx =x + (-x)%2 _ (-x) =
2+2! 33!
i 1
-a -a \? -a )3 v,
. RTv a a RTv RTv
- - ——— + + + ¢ o0

Rl -e In Rv - ¥ 227 3+31

a N RTv -e RTV _1pn RTv RTv

RTv 3.3} 2:21
Vi
I . 3 =4 2
a +(Ra) RTv, a a )
R RTv, Tv2/ ~¢ - 1n RTv, = \RTv,
3431 2° 2%
L
-a
. a ’( a__y _ eRTvl L 2 a \2 }
RTvi \RTv, RTvy; \F™vVi) |{ ~©
3+3! ‘ 2°2!
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mm— a
+ RTv + 1n
3.3 & RTv, 2¢218
82 Vo
/ ds = R dv = R 1 V2
5 . v B n V1 Perfect gas.

8, [2 J Va V2
ds Rdv , af—‘-’- = R [ln (v-b)] o |
51 1 v- -'i'T v2 Tz(-v)

Vl Vi

"
=

(v2-b) a . a Berthelot! '
1n (vi1-b) T2y2 T2y! erthelot's equation.

The two points used for the test for four of these gases
will show how closely each represents the change in entropy
of superheated steam. The first will be:

temperature, = 600°F = 1060°R; pressure. = 1200 psia =

1 1

173,0001b , wv; = 0.4016 = 7,5ft3
ft2 ’ 1bmol

The second point will be: temp = 600°F = 1060°Rj;

pressure, = 20 psia = 28801b/ft? VvV, = 31,47 = 626ft3/1bmol

(626 - 0,u488)
] 3 . - =
Van der Vaals' equation: s, sl R 1n 7.t - 0.488
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(625.512)
S - S = 15’45 l RS—— = .
2. " 8 n s 1545 x 1n (89,05)
s, - s, = 1545 x 4,485 = 6930 frlb
1bmol
Callendar's equation:
a
va- b + TR
s, - s, =R |in — + ine 1l - 1
V1T a ™ v,- b+ 2 v,- b+ 2
™ ™ ™
where a = 1.53x10!% b = -0.55
626 + .55 + 1.53x1010
s, - s, =R {In (1.06x10%)%% |, 1060(10) 1.53x1010
7.5 + .55 + 1,53x1010 3 (1.06x103)44
(1.06x103)~y¢
1 _ 1
7.5 + 0,55 + 1,53x10'° 626 + .55 + 1.53x10!°
(1.06)141010 (1.06%9)10!0
_ (626,55 + 1,26) 1 _ 1
sz - s1 =R JIn oo+ 1,26 * “-““[;.31 527,31]t
s, -8 = R {4.21 + 0,476} = 1545 {u.686}
S, - s} = 7240 ftlb
Tbmol
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a 3.2x106
= _ . . ey ]
RTv 1,545x103%1,06x103(7.5) - 0.26 Dieterici's equation.,

a 0.26v,  0.26x7.5 _ 0. 0031
RTv, ~ v, ) 626  °
s, - s, = 1545 [.0031 SRIE 1n (.0031) - 0.26
1
+ :TTG + 1n(.26) + .015]
s, = §, = 1545 E003l -1+ 5,76 - .26 + 1,3 - 1,345 + .01ﬂ
S, = §, = 1545 x 4,47 = 6900 ftlb
l1bmol
Perfect gas:
s, = 8§, * R 1n !1 = 1545 x 1n EZE = 1545 x 4,42
vy 7.5
§s, - s8; = 6830 ftlb
1bmol

: 2
Berthelot's equation: b = 0.302; a = 8,14x108 1b (ft? )'op
ft2 1bmol

= (Vz-b)
8 - 8,. % R 1n - a a
vV,-b I!VZ * T!vl
Sy -'s; = 1545 1n (826 - .302) _ 8.14x108

7.5 - .302 (1.06)2x106x6,26%x102
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8.14x108
(1.06)2x106x%7.5

6900 - 1,158 + 0.967 x 102

6900 + 95,5 = 6995,5 ftldb
lbmol

From the steam tables by Keenan and Keys, "Thermodynamic
properties of Steam,"” we obtain the actual change in entropy
of the two states. Entropy at 20 psia and 600°F = 1,940,
and entropy at 1200 psia and 600°F = 1,410 Btu/lb.

This is equal to 1.940 - 1.410 = 0,53Btu/lb,

In ftlb this is 0.53 x 18 x 778.3 = 7410 ftlb ,
Tbmol ’ Tbmol

The variation for each gas equation is shown in Figures 1
and 2. .

The percentage deviation for each is as follows:actual-calc.
actual

Van der Waals - 7410-6930 _ 480 x 100% = 6.u48%
7410 7410

Callendar - 7410-7240 = 2,29%
7410

Dieterici - 7410-6900 = 6.87%
7410

Perfect gas - 7410-6830 = 7,.83%
7410

Berthelot - 7410-6996 = 5,50%
7410
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It is obvious that, of these cases considered, the
Callendar equation describes superheated steam best. The
same could be done for other gasses to determine which
equation would fit them best.

III., CONCLUSIONS

It can be seen that the differences and ratios of
specific heats and change in entropy may be determined for
the considered five equations of state.

Comparisons of the difference in specific heats and
change in entropy for superheated steam at a few selected
points show that these equations fit the actual case fairly
well, and most of the equations are useable for engineering
calculations.

These reduced equations could be used to establish use-
ful engineering design tables for several frequently consid-
ered gases,
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